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This paper derives a single-beta asset pricing model in a multi-good, continuous-time model 
with uncertain consumption-goods prices and uncertain investment opportunities. When no 
riskless asset exists, a zero-beta pricing model is derived. Asset betas are measured relative to 
changes in the aggregate real consumption rate, rather than relative to the market. In a single- 
good model, an individual’s asset portfolio results in an optimal consumption rate that has the 
maximum possible correlation with changes in aggregate consumption. If the capital markets are 
unconstrained Pareto-optimal, then changes in all individuals’ optimal consumption rates are 
shown to be perfectly correlated. 

1. Introduction 

The capital asset pricing model (CAPM) of Sharpe (1964) and Lintner 
(1965) is an important theory of the structure of equilibrium expected returns 
on securities in the capital markets. Empirical tests of the model have had 
mixed results, in that security returns do appear to be positively related to 
their respective measured market ‘betas’, but not in the precise manner 
implied by the CAPM.’ By relaxing the assumptions involved in the 
derivation of the CAPM, the model has been extended to more general 
economies, usually at the expense of simplicity in the structure of equilibrium 
expected returns. This paper further develops the intertemporal extension of 
the CAPM that was initiated by Merton (1973) in a continuous-time model. 

Merton’s intertemporal CAPM with stochastic investment opportunities 
states that the expected excess return on any asset is given by a ‘multi-beta’ 
version of the CAPM with the number of betas being equal to one plus the 
number of state variables needed to describe the relevant characteristics of 

*I am grateful for the helpful comments of Sudipto Bhattacharya, George Constantanides, 
Eugene Fama, Nils Hakansson, Jon Ingersoll, John Long (the referee), Merton Miller, Stephen 
Ross, Myron Scholes, and especially Robert Litzenberger. Of course, they are not responsible for 
any remaining errors. 

‘See Jensen (1972) for a survey of many of these results. 
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the investment opportunity set. Since all of those state variables are not 
easily identified, this intertemporal extension, while quite important from a 
theoretical standpoint, is not very tractable for empirical testing, nor is it 
very useful for financial decision-making. This paper utilizes the same 

continuous-time economic framework as that used by Merton, likewise 
permitting stochastic investment opportunities. However, it is shown that 
Merton’s multi-beta pricing equation can be collapsed into a single-beta 
equation, where the instantaneous expected excess return on any security is 
proportional to its ‘beta’ (or covariance) with respect to aggregate con- 
sumption alone. In this paper, it is also demonstrated that this result extends 
to a multi-good world, with an asset’s beta measured relative to aggregate 
real consumption. The fact that this model involves a single beta relative to a 
specific variable, rather than many betas measured relative to unspecified 
variables, may make it easier to test and to implement, given certain 
stationarity assumptions on the joint distributions of rates of return and 
aggregate consumption. 

Section 2 presents the continuous-time economic model with stochastic 
investment opportunities. General versions of the ‘mutuaJ fund’ theorem of 
Merton (1973) and Long (1974) and of their multi-beta CAPM are briefly 
derived. The single-beta, single-good intertemporal CAPM as described 
above is derived and discussed in section 3. This derivation also generalizes a 
similar single-beta CAPM derived in a multi-period state preference model 
by Breeden and Litzenberger (1978). They derived the same pricing equation, 
but only for assets with cash flows that are jointly lognormally distributed 
with aggregate consumption. Neither consumption nor asset prices need be 
lognormally distributed here, but they are assumed to follow diffusion 
processes. A simple example is presented in section 4 to illustrate the point 
that the relation of an asset’s return with aggregate consumption precisely 
measures its relevant risk, whereas the return’s relation to aggregate wealth is 
not an adequate measure of an asset’s risk. 

Section 5 demonstrates that there are intertemporal analogs to the single- 
period results that state that all individuals’ wealths will be perfectly 
correlated and that each individual’s portfolio beta is proportional to his 
Pratt (1964) - Arrow (1965) measure of relative risk tolerance. In particular, 
it is proven that changes in all individuals’ optimal consumption rates are 
perfectly correlated at each instant, and each individual’s optimal in- 
stantaneous standard deviation of changes in consumption is proportional to 
his relative risk tolerance, if the capital markets permit an unconstrained 
Pareto-optimal allocation of consumption. For general capital markets, it is 
shown that each individual’s optimal portfolio is such that changes in the 
individual’s optimal consumption rate have the maximum possible cor- 
relation with changes in the aggregate consumption rate. 

Section 6 presents a derivation of a ‘zero-beta’ intertemporal CAPM for an 
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economy with no riskless asset. The expected return on the zero-beta 
portfolio is obtained from a portfolio with returns that are uncorrelated with 
changes in aggregate consumption. This pricing model is an intertemporal 
analog to the single-period zero-beta model of Lintner (1969) Black (1972), 
and Vasicek (1971). 

A multi-good extension of the intertemporal CAPM is presented in section 
7. Long (1974) has extended Merton’s multi-beta model to the multi-good 
case in a discrete-time economy, but this extension resulted in a pricing 
equation with even more terms. The focus of this section of the paper is on 
the derivation of a single-beta CAPM in the multi-good world. It is shown 
that equilibrium expected excess real returns on assets are proportional to 
the assets’ betas with respect to aggregate real consumption, where aggregate 
real consumption is computed for an instantaneously additive price index 
with aggregate expenditure fractions on the various goods as weights. This 
result also extends the single-risk-measure asset pricing equation of Grauer 
and Litzenberger (1979) from a multi-good economy with strong ‘homo- 
thetic’ restrictions on consumption preferences to an economy with general 

and diverse consumption preferences. The continuous-time framework per- 
mits their covariance of an asset’s return with the marginal utility of 
aggregate consumption to be written as a function of the asset’s 
consumption-beta. 

2. The economic model 

The continuous-time model of this paper is very similar to the models 
utilized by Merton (1971, 1973), Lucas (1978) and Cox, Ingersoll and Ross 
(CIR) (1977). Therefore, in the interest of brevity, common facets of this 
model will only be sketched, with the unfamiliar reader being referred to 
those earlier developments of the model. Readers familiar with these 
contmuous-time models may skip this section without losing the thrust of the 
paper. 

Initially, it is assumed that there is a single good that may be consumed 
by individuals or invested via firms; a multi-good extension is presented in 
section 7. Individuals are assumed to behave as price takers in perfectly 
competitive, but possibly incomplete capital markets that are frictionless. 
They may trade contmuously and may short-sell any assets with full use of 
the proceeds. Trading takes place only at equilibrium prices. Also, it is 
assumed that all investors have identical probability beliefs for states of the 
world. Individuals hold wealth in the form of risky asset shares or in an 
instantaneously riskless asset; the case where no riskless asset exists is 
presented in section 6. Wk is individual k’s wealth and wk is his A x 1 vector 
of fractions of wealth invested m the various risky assets. (Throughout this 
paper, vectors will appear as bold italic and multi-column matrices will 
appear as bold reman.) Letting 1 be a vector of ones, wi= 1-1’~~ is 
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individual k’s fraction of wealth invested in the riskless asset. Each individual 
k has a stochastic number of labor units, y”, that yield a continuous wage 

income rate of Iyk.’ 
It is assumed that there exists an N x 1 vector of state vpriables, 8 that 

(with time) describes the state of the world. For examlYle, asset prices, 
dividend yields, and income rates may be written as P(0, t), S(& t), and 
I(& t)y“(& t), respectively. Assuming that the state vector 8 follows a 
continuous-time vector Markov process of the Ito type, the following 
stochastic differential equations may be written as 

dP 
+= [&(O, t)-s,(fI, t)] dt +c.(fI, t)dz, for each asset a, (2) 

0 

dp = &k (& t ) dt + u'yk (6 t ) d.Zyk for each 
individual k, 

(3) 

where the drift and diffusion coefficients in (2) and (3) may be obtained from 
those in (1) by Ito’s Lemma.3 Throughout, pj(& t) represents the expected 
rate of change in variable j at time t, when’ the state vector is 8 at that time. 
Similarly, cj(& t) represents the standard deviation of that rate of change, 
which depends upon time and the state vector; uB is the diagonal matrix of 
the instantaneous standard deviations of the state variables. The zg variables 

are correlated Weiner processes, having zero means, unit variances per unit 
of time, and variance-covariance matrix and correlation matrix VBB, which 

may depend upon 0 and t. 
Although there are a number of technical conditions that functions of Ito 

processes must meet for the application of Ito’s Lemma [and for the 
representations of (2) and (3) to be rigorous], the economic restrictions on 
the movement of asset prices and incomes are not severe. Asset prices, 
dividends and incomes must follow continuous sample paths, but their levels, 
their mean rates of change and their variances and covariances may be 
stochastic, depending upon the evolution of the state vector over time. Thus, 

*The labor-leisure choice IS not exammed in this paper. The formal model of sections 26 
treats an individual’s labor umts supplied as stochastic and possibly correlated with all other 
economic variables, but there is no disutility for labor supplied. The multi-good model of section 
7 could be adapted to handle the labor-leisure choice. 

‘For discussIons of stochastic differential equations and of Ito’s Lemma, see Merton (1978), 
Arnold (1974, set 5%5.5), Gihman and Skorohod (1972, part II, ch. 2, sec. 6), Kushner (1967, 
sec. 1.4), or McKean (1969, ch. 2). For discussions of the optimal control of these. stochastic 
processes, see Arnold (1974, sec. 13.1-13.2) or Kushner (1967, ch. 6). For less technical 
discussIons of these processes and theorems and for applications of them in economic models, 
see Merton (1971, 1973), Garman (1976), and Cox, Ingersoll and Ross (1977). 
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in Merton’s (1973) terminology, the ‘investment opportunity set’ may be 
stochastic here. The state variables need not be restricted in number, nor do 
they need to be specified for the purposes of this paper. Restrictions on their 
number would restrict the dimensionality of the price system, as noted by 

Rosenberg and Ohlson (1976). 
For the derivations that follow, it is not necessary to explicitly examine 

firms’ production decisions and the supply of asset shares, provided that the 
assumptions made are consistent with optimal behavior of firms in a general 
equilibrium model. To be consistent with general equilibrium, prices must be 
recognized to be endogenously determined through the equilibrium of supply 
and demand. The model presented is consistent with endogenously de- 
termined prices if, as assumed, all random shocks to the economy are 
captured as elements of the state vector, 8. These random shocks may affect 
both the supplies and demands for shares. However, assuming that both 
supply and demand functions are functions of the state variables (shocks) 
that follow Ito processes, the equilibrium prices that arise will also follow Ito 
processes that are representable as in (2). This statement follows from Ito’s 
Lemma, subject to the qualification that the supply and demand functions be 
sufficiently smooth for Ito’s Lemma to apply.4 Thus, the economic model of 
(lb(3) is consistent with endogenously-determined prices. 

As an example of a supply side that can be imbedded in this model 
without changing any of the analysis, consider the following economy. The 
output of the economy is produced by F different productive units (firms) 
under conditions of uncertainty about current investment productivity and 
about future investment technology. Firms buy stocks of the good and rent 
labor units of the good for use in their production processes. The current 
stock of the good that firm f owns is x,., and the current amount of labor 
employed by it is yJ. The F x 1 vectors of capital investment and labor 
employment by the various firms are denoted x and y, respectively, and the 
current wage rate is 1. Changes in the amount of the good that a firm has are 
caused by its production, less its wage payments and dividends, df, and plus 
any new capital infusions, qr, from sales of stock (negative qr represents 
stock repurchases). It is assumed that such changes in the stock of the good 
that productive units have may be described by a system of stochastic 

differential equations of the Ito type, 

dx=Cr,(x,y,e,t)-ly--+cldt+a,(x,y,e,t)dz,, (4) 

and 

(5) 

‘See footnote 3 
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where e is an E x 1 vector of indices that describe the productivity of current 
technology, and z, and z, a,re vectors of correlated Wiener processes. The 
vector of expected production rates is pc,, and u, is the diagonal matrix of 
instantaneous standard deviations of the various production rates. Both 
expected and random components of a firm’s production may depend upon 
the capital and labor employed and upon the current level of technology. As 
indicated by (5) technological change is assumed to be random, with the 
productivity indices following a vector Markov process. Although it is not 
done here, it is also possible (with more notation) to model expenditures on 
research and development that would affect the rates of technological change 
in the various production processes. 

In the example, each firm may issue a number of different securities, such 
as debt and equity, that contractually partition its cash flows over time 
among investors in the firm. Each firm is assumed to maximize the value of 
its securities, net of input costs. For slightly greater generality, it is also 
assumed that individuals may issue or purchase a number of contractually 
defined securities (‘side bets’) that have zero net supplies. Options and 
forward contracts are permissible in this class of financial assets. 

In a rational expectations equilibrium, asset prices in this economy are 
functions of the consumption preferences of individuals and time, which are 
non-stochastic, and the following stochastic variables: (1) the current pro- 
ductivities of the production processes, (2) the current supplies of capital and 
labor, and (3) the current distribution of income and wealth among 
individuals. Since all of these stochastic variables follow Ito processes in this 
model, and since they jointly comprise a Markov system, the initial 
representation of prices, dividends and income rates as functions of a 
Markov vector of state variables and time, as given by eqs. (lH3), is 
consistent with the existence of a production sector as sketched and with the 
endogenous determination of asset prices. Changes in the state vector, 8, for 
this economy are the results of stochastic production and stochastic tech- 
nological change, which are the underlying exogenous variables of this 
example. Any other economies with supply side structures that are consistent 
with (l)-(3), given the preference and the other assumptions, are also 
governed by the theorems and pricing relations of this paper. 

It is possible, with certain preference and/or probabilistic assumptions, that 
fluctuations in some of the elements of the state vector 8 do not affect any 
individual’s expected utility of lifetime consumption, given the individual’s 
wealth. For example, certain elements of the state vector may affect the 
distribution of payoffs between two assets in such a way that the total payoff 
to the two is unaffected. If all individuals hold identical fractions of the two 
assets, then their expected utilities are unaffected by fluctuations in those 
state variables, assuming that the state variables have no other effects. To 
distinguish between state variables that do affect at least one individual’s 
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expected utility, given the person’s wealth, it is convenient to define another 
state vector, s, that contains those state variables that do affect at least one 
individual’s expected utility, given his wealth. This S x 1 vector of variables is 
a subset of the comprehensive state vector, 0, and is assumed to follow a 
vector Markov process. Summarizing, each individual’s expected utility of 
(remaining) lifetime consumption may be written as a function of his wealth, 
the vector of relevant state variables, and time, Jk = Jk( Wk, s, t), where 

ds = p&s, t) dt + nS dz,. (1’) 

As all of the subsequent analysis and theorems are in terms of only these 
state variables, s, they are referred to throughout the paper as the ‘state 
vector’ or as the ‘vector of state variables’. 

Each individual k is assumed to maximize the expected value at each 
instant in time of a time-additive and state-independent von Neumann- 
Morgenstern utility function for lifetime consumption, 

~Uk(ck(+)dr+Bk[Wk(tk),tk,s(tk), , 
f 

(6) 

where Tk is individual k’s time of death, and Uk and Bk are his strictly 
quasiconcave utility and bequest functions of consumption, ck, and terminal 
wealth, Wk(tk), respectively.5 E, is the expectation operator at time t, 
conditional upon the state of the world at that time. 

At each instant, individual k chooses an optimal rate of consumption, ck, 
and an optimal portfolio of risky assets, wk Wk. Given these choices, Merton 
(1971) has shown that the individual’s wealth will follow the stochastic 
differential equation, 

d Wk = [w”‘(p, - r) + r] Wk dt + (Iyk - c’) dt + Wkwk’nll (dz,), (7) 

where r is the instantaneously risk-free interest rate, r = r .I, pe is the A x 1 
vector of expected total (capital gains and dividends) rates of return on 
assets, and u, is the A x A diagonal matrix of assets’ instantaneous standard 
deviations. Thus, p,, u,, and dz, are all as presented in (2). 

Let Jk( Wk, s, t) be the maximum expected utility of lifetime consumption 
in (6) that is obtainable with wealth Wk and opportunities s at time t. Under 
certain conditions, if there exists a well-behaved function Jk(Wk, s, t) and 
controls ti(W’, s, t) and wk( Wk,s, t) that solve the following problem subject 

‘Under certain conditions, mdividuals’ lifetimes may be uncertam. See Merton (1973) or 
Richard (1975). See the Richard paper for an analysis of optimal life insurance rules in a 
continuous-time model. 
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to the constraint of (7), then the consumption and portfolio decisions are 
optimal (with superscript k suppressed),6 

1 ( 
[w’(p,--r)+r]W+ly--c 

O=max U(c,t)+(JwJ:Jt) cs 
(c. wi 

1 ) 

where subscripts of the J function represent partial derivatives with respect 
to wealth (J,) and the various state variables (J,). The matrix of v’s is a 
partitioning of the variance-covariance matrix of the individual’s wealth and 
the state variables. The box multiply sign implies that corresponding 
elements of the two matrices are multiplied, then summed. Note that the 
individual’s variance rate for wealth is I&+,= (Wk)‘wk’Vaawk, and his vector 
of covariances of wealth with the state variables is I’;,= Wk~k’V,,s, where V,, 
is the A x A variancecovariance matrix of asset returns, and V,, is the A x S 
matrix of covariances of asset returns with state variables. 

First-order conditions for an interior maximum in (8) may be stated as 

U:(ck,t)=J:W(Wk,s,t), (9) 

and 

These conditions give the individual’s optimal risky asset portfolio, (lo), and 
state that the marginal utility of another unit of consumption must equal the 
indirect marginal utility of wealth for an optimal policy. 

The following portfolio allocation theorem is obtained directly from 
individuals’ portfolio demands as given by (10). Its proof is in appendix 1. 

Theorem 1. S +2 Funds. All individuals in this economy, regardless of 
preferences, may obtain their optimal portfolio positions by investing in at 
most S + 2 funds. These funds may be chosen to be: (1) the instantaneously 
riskless asset, (2) the S portfolios having the highest correlations, respectively, 
with the S state variables summarizing investment and income opportunities, 
and (3) the market portfolio. 

Of course, any S+2 funds that span the same vector space would also 
suffice. 

‘See footnote 3 for references for this result and the condltlons under which It IS valid. 
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To see that Merton’s (1973) ‘multi-beta’ asset pricing model obtains in this 
economy when betas are measured with respect to aggregate wealth and the 
returns of assets that hedge against changes in the various state variables, 
aggregate individuals’ portfolio demands in (10) and substitute in equilibrium 
expected excess returns for the market portfolio, (,Q- r), and for assets 
perfectly correlated with the state variables, (h-r), assuming that such 
assets exist. Doing this, Merton’s model is obtained,7 

p.-r=Bo,Ms hf-’ ( ) A+ 
, (11) 

where fl0,Ms is the A x (S+ 1) matrix of ‘multiple-regression’ betas for all 
assets on the market and on the assets perfectly correlated with the state 
variables. This type of multi-beta equation was also derived in a discrete-time 
model by Long (1974). As both Merton and Long noted, the Sharpe-Lintner 
CAPM will not generally hold in these intertemporal economic models - 
expected excess returns are not proportional to market betas in these models 
with stochastic investment opportunities. 

As shown by Garman (1976) and by Cox, Ingersoll and Ross (1977), each 
asset’s price in this economy is a solution to a second-order partial 
differential equation in its price. This ‘fundamentai valuation equation’ may 
be obtained for any asset by using Ito’s Lemma to find its expected 

‘When assets with returns that are perfectly correlated with the state variabIes do not extst. a 
multi-beta CAPM as m (11) holds with one modification: expected excess returns for the S 
portfolios in (11) are those of the S portfolios with the maxtmum correlations with the S state 
variables, respectively, which have portfolio weights that are proportional to the columns of 
V,‘V,. Simtlarly, the S non-market betas required for each asset for (11) may be measured 
relative to the returns on these S most hrghly correlated portfolios. Briefly, the proof is as 
follows. From Appendix 1, (A.l), 

where w,. is the A x S matrix of S portfohos with the maxtmum correlatton of returns wrth the 
various state variables, respectively. Pre-multtplying thts equatton by V,, gives 

r.-r=V,,(llk,)+V,,.(-k,lk,)=V,,,,. 

where V,,.,,,. IS the (S+l)x (S+l) variancecovartance matrtx for the market and the most 
correlated portfolios’ returns. Substituting this result into the previous equation gives 

whtch is the result stated. 
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instantaneous return from the function P(O,t) and then by equating this drift 
rate to the equilibrium drift rates implied by the multi-beta model of (11). An 
interpretation of the general mathematical solution to the valuation equation 
is given in the CIR paper, but useful closed-form solutions are known only 
for a few assets, and then only under highly restrictive preference and state 
assumptions. In particular, CIR assume logarithmic utility functions and a 
single state variable to derive their closed-form solution for the term 
structure of interest rates. In this paper, no restrictions on state variables are 
imposed, and only the relatively weak preference assumption of (6) is made. 
Consequently, the goal here is to simplify the expression relating asset risks 
and returns, rather than to solve for an explicit pricing function, P(t?, t). The 
next section demonstrates that the multi-beta intertemporal CAPM of (11) 
can be collapsed into a single-beta intertemporal CAPM, with no additional 
assumptions. 

3. t ‘single-beta’ intertemporal asset pricing model 

Up to this point, the consumption-investment analysis is virtually the 
same as in Merton’s (1973) continuous-time development, but with slightly 
more discussion of the supply side. An individual’s portfolio’ holdings are 
found in terms of his indirect utility function for wealth, Jk(Wk,s, t), and 
equilibrium expected asset returns are correspondingly found m terms of 
aggregate wealth and the returns on assets that are perfectly correlated with 
changes in the various state variables, if they exist. This paper focuses upon 
the individual’s direct utility function for consumption, Uk(ck, t), in the 
analysis of equilibrium expected returns on assets. The two approaches are 
intimately linked by the optimality condition that the marginal utility of 
consumption equals the marginal utility of wealth. 

To restate the optimal portfolio demands in terms of the individual k’s 
optimal consumption function, ck(Wk, s, t), note from (9) that: Jk, = Uz, which 
implies that JbS= I&,k and JL,= Us&, where subscripts of U, J and c 
denote partial derivatives. Define Tk to be individual k’s absolute risk 
tolerance: Tk = - U:/U~c. Then the optimal portfolio may be written as 

wk Wk = (Tk/ck,)Va;’ (p,, - I’) - V,‘V,,(c~Ick,), (12) 

where I(. - Y is the vector of instantaneous expected excess returns on assets, 
V,, is their variance-covariance matrix, and V,, is the A x S matrix of 
covariances of asset returns with changes in the state variables. 

Pre-multiplying (12) by c~Vaa and rearranging terms gives 

Tk(po - r) = && + vosc:, (13) 



D.T. Breeden, An u~rrrtcntporal u\wt prmng model 215 

where I$,,, is the vector of covariances of asset returns with k’s wealth 
change. Si\ce k’s optimal consumption IS a function, ck( Wk,s, t), of his 
wealth, the state variables and time, Ito’s Lemma imphes that the local 
covariances of asset returns with changes in k’s consumption rate are given 

by 

v,Ck = L&v + vad, (14) 

which is the right-hand side of (13). Intuitively, (14) can also be seen by 
noting that the random change in k’s consumption rate is locally linear in 
the random changes in k’s wealth and the state variables, with the weights in 
the linear relation being the partial derivatives of k’s consumption with 
respect to wealth and the state variables, Thus, the local covariance of asset 
j’s return with k’s change m consumption is 

cov(F,,dP)=cov +$,(dWk)+Cc;,(dF,) 
I 

which is what is stated by (14). 
By substituting (14) into (13) it is seen that each individual will choose an 

optimal portfolio in such a way that the local covariance of each asset’s 
return with changes m his optimal consumption is proportional to the asset’s 
expected excess return, 

Kck= Tkbc, - r). (16) 

This relation holds for each individual k and can be aggregated by summing 
over all individuals in (16). Using the aggregate relation, defining the 
aggregate consumption rate to be C, and defining a measure of aggregate risk 

tolerance to be TM =xkTk, it follows that the expected excess returns on 
assets in equilibrium will be proportional to their covariances with changes 

in aggregate consumption, 

po-r=(TM)-l&. (17) 

By dividing both the random consumption change and aggregate risk 
tolerance by current aggregate consumption, (17) may be expressed in terms 
of aggregate relative risk tolerance and return covariances with changes in 
the logarithm of consumption (percentage rates of change of consumption), 

~a-r=(T~lC)-‘Vo,,,,. (17’) 
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For any portfolio M with weights w”, pre-multiplying (17’) by those 
weights gives 

and 

(h - r )/a h4,1”4wc)-1~ 

I(.-r=(Vu,InJ~mlnC)(~M-I) 

= (B,clPhfc)(A4 - r), 

(18) 

(19) 

where fiOc and /IMlc are the ‘consumption-betas’ of asset returns and of 
portfolio M’s return. The consumption-beta for any asset j’s return is defined 
to be 

p,c = cov ( fj, d In C)/var (d In e). (20) 

If there exists a security whose return is perfectly correlated with changes in 
aggregate consumption over the next instant, then the risk-return relation of 
(19) can be written in terms of assets’ betas measured relative to that 

security’s return, /Ic, and the expected excess return on this security, pz - r,* 

(21) 

Portfolio M may be any measure of the market portfolio or any other 
portfolio. Eq. (19) states that the ratio of expected excess returns on any two 
assets or portfolios in equilibrium will be equal to the ratio of their betas 
measured relative to aggregate consumption. Thus, the relevant risk of a 
security’s return may be summarized by a single beta with respect to 
consumption - a considerable simplification over the Merton multi-beta 

derivation, at no loss of generality in assumptions. 
The intertemporal asset pricing relation of (19) or (21) holds at each 

instant in time, but does not necessarily hold for returns and betas that are 
measured over finite periods of time. Breeden and Litzenberger (1978) have 
shown that assumptions of identical constant relative risk aversion utility 
functions for individuals and lognormally distributed consumption are suf- 
ficient to derive (19) for returns and consumption-betas measured over finite 
time periods. 

There are two ways to understand the economic intuition of this result: 

*ln general, even If there does not exist a portfoho whose return is perfectly correlated with 
aggregate consumption, the consumption-betas in (19), (20) and (21) may be equivalently 
derived as the betas measured relative to the returns on the asset portfolio that has the most 
highly correlated returns wtth changes in aggregate consumption. The proof 1s a univartate 
version of footnote 7, working from (17) and the fact that the most correlated portfoho has 
weights proportional to V,’ V,,. 



the first focuses upon the marginal rates of substitution between con- 
sumption today and consumption in the future, whereas the second in- 
terpretation focuses upon the level of wealth and the productivity of 
investments at future dates and states. Both explanations are briefly pre- 
sented here. Although capital market completeness was not necessary for the 
ICAPM of (19X the first explanation is cast in the simplified framework of 
complete markets.’ 

Any asset may be described for valuation purposes by its total payoff, 
price and dividend, in the various possible states of the world in the next 
instant (a period in discrete time). The value in equilibrium of a $1 payoff in 
a particular state of the world at a future date is equal to the state’s 
probability multiplied by the ratio of the marginal utility of consumption at 
the future state to the marginal utility of consumption in the current period. 
That is, 

(22) 

where 1, ,s, is k’s shadow price at time t of $1 received at time t, if state s1 

occurs, II, Is I is the probability of that state, c:~,, is k’s optimal consumption if 
that state occurs, and c: is k’s current consumption. The value of any asset 
having a dividend, d, + ,,s, and price, P, + l,s, at time t+ 1 in different states of 
the world is 

(23) 

which must be the same for all individuals behaving optimally. Thus, the 
price per unit of probability for these elementary state-contingent claims 
varies among states only as planned consumption varies among states. The 
relation is inverse between planned consumption and the price/probability 
ratio for the state, due to the diminishing marginal utility of consumption. 
Therefore, holding the expected payoff on an asset constant, the value of the 
asset will be negatively related to its covariance with the individual’s 
consumption. As seen from (22), for each date in this economy, if the capital 
markets are Pareto-optimal, the larger L1151/z,,5, is, the smaller each 
individual’s consumption is in state s1 .l” Since each individual’s planned 
consumption in various states is positively and monotonically related to 
aggregate planned coni;umption. it can also be said that. holding the 

‘Theorem 3 of section 6 characterzes the relation of mdlwduals optlmal consumption rates 
to the aggregate conwmptwn rate for the general case of mcomplete capital markets. Followmg 
that theorem, addItIonal dlscusslon of the pricing results of (19) and (21) is presented. 

“For a detailed analysis of optimal consumption allocatlons m a multi-period state preference 
framework. see Brccdcn and Lltrcnberger (1978) 
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expected payoff on an asset constant, the value of the asset will be negatively 
related to its covariance with aggregate consumption. This implies relatively 
large (small) equilibrium expected returns on assets with relatively large 
(small) covariances with aggregate consumption, as is indicated by (19). 

The key to this analysis is the relation between low levels of aggregate 
consumption and highly-valued state payoffs via the relation between value 
and marginal rates of substitution of consumption. The reason that payoff 
covariances with more distant levels of aggregate consumption (or their 
present value, aggregate wealth) do not appear explicitly in the pricing 
equation is that they are already reflected in the levels of equihbrium asset 
prices that will occur in alternative states at the next instant. That is, the 
asset’s value in the next period appropriately reflects the covariances of its 

more distant payoffs with more distant levels of aggregate consumption. 
The alternative, equivalent explanation is presented somewhat less ri- 

gorously, but may be more intuitive in light of the development of the 
finance literature. Holding expected payoffs constant between two assets, one 
asset’s payoff probability distribution is preferred to the other’s, if it tends to 
pay more highly in states where another dollar to invest gives large benefits 
(high marginal utility) and tends to pay relatively less in states where another 
dollar invested gives small benefits (low marginal utility). Whether an 
additional dollar invested is more or less beneficial depends upon: (1) the 
wealth of the economy in that state, via the diminishing marginal utility of 
wealth (future consumption), and (2) the physical productivity of investments 
in the state, that is, the marginal rate of transformation of goods today into 

goods in the future. The diminishing marginal utility of wealth was the 
driving force for the single-period CAPM and its portfolio diversification 
theorem. In the intertemporal model, as Merton (1973) has shown, changing 
investment opportunities create what he terms ‘hedging demands’ for assets, 
with their concomitant implications for equilibrium expected returns on 
assets. 

An asset’s covariance with aggregate consumption is all that is necessary 
for asset pricing, because aggregate consumption is perfectly negatively 
correlated with the marginal utility of an additional dollar of wealth invested 
through the optimality condition : Uc(c, t) = J,( W, s, t). Holding investment 
opportunities constant, if wealth is relatively high in a state, then the value 
per dollar of payoffs in that state is low. Optimal consumption is relatively 
high in that state. Holding wealth constant, if investment opportunities are 
relatively good m a state, then the present value of a dollar payoff in that 
state is high, as it can be invested quite profitably. In this case, optimal 
consumption is relatively low for individuals. Always, when the value of an 
additional dollar payoff in a state is high, consumption is low in that state, 
and when the value of additional investment is low, optimal consumption is 
high. This is not always true for wealth, when investment opportunities are 
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uncertain. It is quite possible that there are states of the world where wealth 
is high and, yet, the marginal utility of a dollar is high due to the excellent 
investment opportunities in the state. Similarly, it is quite possible that there 
are states where wealth is low and, yet, the marginal utility of a dollar is low 
due to poor investment opportunities. Given preferences, wealth is not a 
sufficient statistic for the marginal utility of a dollar - consumption is. ‘I For 
optimum consumption and portfolio choices, an individual’s marginal utility 
of wealth or consumption is a monotonically decreasing function of con- 
sumption. For this reason, holding the expected payoff on an asset constant, its 
present value 1s a decreasing function of its covariance with aggregate 

consumption. Consequently, the higher that an asset’s beta with respect to 

consumption is, the higher its equilibrium expected rate of return. 
Note that this analysis is consistent with the derivations of the market- 

oriented CAPM by Sharpe (1964) and Lintner (1965) in a single-period 
context, and by Merton (1973) and Long (1974) in an intertemporal model. 
In the single-period model, all wealth is consumed at the end of the period, 
so investment opportunities are irrelevant. In Merton’s model, investment 
opportunities are required to be constant for the derivation of the single-beta 
CAPM; thus, wealth is a sufficient statistic for marginal utility in that model. 
Merton and Long’s multi-beta pricing models are derived with stochastic 
investment opportunities, as in this paper; the foregomg analysis de- 
monstrates that wealth is not a sufficient statistic for marginal utility in their 
models. 

4. An example 

A simple example more graphically illustrates the main point. Consider a 
3-date economy with many identical individuals and a single good called 
wheat. The current stock of wheat is the entire wealth of the economy. At 
each date, the amount of wheat to be consumed and the (residual) amount to 
be invested must be determined; wheat invested produces more wheat that 
will be available for future consumption. Assume that the optimal con- 
sumption/investment decision has already been made for date 1 and that the 
amount of wheat available for consumption and investment at date 2 will 
either be 200 bushels/person or 231 bushels/person, depending upon the state 
of the world. Furthermore, assume that the physical productivity of wheat 
invested at date 2 for consumption at date 3 may either be 0 % or 20x, 
depending upon the state of the world. This ‘re-investment rate’ will be 

“The fact that consumption 1s a sufficient statistic for an mdlwdual’s margmal utihty LS due 
to the assumption that individuals have time-additive and State-Independent preferences for 
consumption. 
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known for certain at date 2, but is unknown at date 1. Constant returns to 
scale are assumed. 

At date 2, each individual chooses consumption, c2, and investment, W, 
-c2, which results in consumption at date 3 of c3 = (W, -c2)(1 + r2), where 
r2 is the physical productivity of investment at date 2. Each individual’s 

utility function is u(c,, cj) = ~9.~ + cj’ . OS It may be verified that the optimal 
consumption at date 2 is c2 = W,/(2 + r). At date 2 there are four possible 
states of the world, representing the different possible combinations of wealth 
and productivity, W, and r, respectively. Consumption and the marginal 
utility of another bushel of wheat at date 2 for either consumption or 
investment will depend upon the state of the world as shown in table 1. 

It is seen from table 1 that marginal utility tends to be negatively related 
to wealth, but not perfectly. In particular, note that wealth in state 4 is 
greater than that in state 1, but marginal utility in state 4 is higher than that 
in state 1. This is true because the difference in physical productivity between 
the two states has offset the decline in marginal utility caused by the wealth 
differential. Since marginal utilities at time 2 are essential in the de- 
termination of prices of assets at time 1 from their state-contingent payoffs, 
covariances with wealth are inadequate risk measures, even in a mean- 
variance model. 

- 

State 

1 
2 
3 
4 

Table 1 

Consumption, wealth, and marginal utility: An example. 

Physical Optimal Marginal 
Wealth productivity consumption utility 

220 0% 110 0.0476 
220 20% 100 0.0500 
231 0% 115.5 0.0465 
231 20% 105 0.0488 

From table 1, it is seen that consumption is perfectly negatively related to 

marginal utility, as it must be with state-independent preferences. As a 
consequence, in the locally mean-variance, continuous-time model, co- 
variance with consumption is the relevant risk measure for the pricing of 
assets. 

5. Properties of individuals’ optimal consumption functions 

In the single-period portfolio theory of Markowitz (1952), Sharpe (1964), 
Lintner (1965) and Mossin (1966), two important results were obtained: (1) 
all individuals hold the same risky asset portfolio or. alternatively stated, all 
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individuals’ rates of return on wealth are perfectly positively correlated, and 
(2) each individual’s optimal portfolio beta or portfolio standard deviation is 
proportional to his Pratt (1964) - Arrow (1965) measure of relative risk 
tolerance. Clearly, from the portfolio theory of section 2, neither of these 
results holds in the intertemporal choice model with stochastic investment 
opportunities. This section presents two analogous results that do obtain in 
the intertemporal model, if the capital markets permit an unconstrained 
Pareto-optimal allocation: (1) at any instant, the changes in all individuals’ 
optimal consumption rates are perfectly positively correlated, and (2) at each 
instant, every individual’s instantaneous standard deviation of changes in his 
consumption rate is proportional to his Pratt-Arrow measure of relative risk 
tolerance.” 

The first result, which was discussed in section 3, is stated more precisely 
by the following theorem: 

Theorem 2. Optimal Consumption Paths. Given the continuous-time econ- 
omic model and the assumption that the capital markets permit an uncon- 
strained Pareto-optimal allocation of consumption, at every instant in time, the 
change in each individuals optimal consumption rate is perfectly positively 
correlated with the change in every other individual’s optimal consumption rate 
and with the change in the aggregate consumption rate for the economy. 

Proof. The assumption of Pareto-optimal capital markets implies that the 
state-contingent allocation of consumption is the same as when there exists, 
at each instant in time, the market portfolio, a riskless asset, and a set of 
portfolios whose returns are perfectly correlated with the various state 
variables that affect individuals’ optimal consumption rates, ck(Wk,s, t).” As 
shown in section 2, individuals would need only to trade in those assets to 
achieve their optimal portfolios. Letting p and V represent the (S+ 1) x 1 

drift vector and the (S + 1) x (S + 1) incremental covariance matrix for the 
market portfolio and those S portfolios’ rates of return, respectively, it is 
shown in appendix 2 that the instantaneous covariance between individual 
k’s changes in consumption and individual j’s is 

cov(ck,Cj)=TkTJ(p-r)’ Vml(p-r). (24) 

From (24) letting y = (p - r)‘V- ‘(a- r), the correlation between k’s and j’s 

“The relatrve risk tolerance referred to is calculated from the individual’s (direct) utility 
functton for consumption; rt IS not necessarily equal to the mdividual’s risk tolerance measured by 
his (indirect) utility function for wealth. The ‘direct’ measure does not depend upon the state of 
the world, given the indrvidual’s consumption, whereas the ‘indirect’ measure in general does 
depend upon the state vector, given wealth. 
“For a proof, see Breeden (1977, ch. 5). 
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changes in consumption is (where ‘std’ represents an instantaneous standard 
deviation) 

corr (ck, cj) = 
cov (Ck, c’) TkTJy 

std(ck)std(cj)=\;(Tk)2Y,/m=1’ 
(25) 

Similarly, by aggregating in (24) each individual’s correlation of consumption 

with the aggregate is seen to be unity. Q.E.D. 

Theorem 2 could have been anticipated by noting that Breeden and 
Litzenberger (1978) proved that an individual’s optimal consumption at any 
date in the multiperiod economy may be expressed as a function of only 
aggregate consumption at that date. They utilized an assumption of partial 
homogeneity in beliefs and they assumed that individuals’ preferences for 
consumption were time-additive and state-independent, as is assumed in 
section 2, eq. (6). With homogeneous beliefs as assumed here, the functional 
relationship between each individual’s consumption rate and the aggregate 
consumption rate is strictly monotonic and increasing. Given their results, 
Ito’s Lemma provides Theorem 2 in the continuous-time economy, since by 
Ito’s Lemma any random variable that follows an Ito process is (locally) 
perfectly positively correlated with any positive, strictly monotonic function 
of it. 

To see that risk tolerance (or, inversely, risk aversion) is reflected 
proportionally in each individual’s standard deviation of changes in his 

optimal consumption path, note that from (24): std(ck)= TkA and that 
std (ck)/std (C) = Tk/TM. Similarly, in terms of standard deviations of growth 
rates, std (In ck)/std (In C) = T*kIT*M, where T*k= Tk/ck is k’s relative risk 

tolerance and T*M = TM/C is an aggregate measure of relative risk tolerance. 
The implication is intuitive: those who are very risk averse will choose 
consumption paths with low variability, compared to those chosen by 
individuals who are less risk averse. Of course, in the limiting case of an 
individual with infinite risk aversion, the individual would choose complete 
insurance against any fluctuation in his consumption path. His wealth would 
be variable in such a way as to offset any impact of changing investment 
opportunities on his optimal consumption. In general, those who are more or 
less risk averse than average can be identified by empirically observing the 
standard deviations of individuals’ consumption rates. They cannot be 
identified merely from their asset portfolios, as was implied by single-period 

portfolio theory. 
In general capital markets, it may or may not be possible to achieve an 

unconstrained Pareto-optimal allocation of consumption with portfolios of 
available securities. For example, this situation may occur if there does not 
exist a portfolio of assets with a return that perfectly ‘hedges’ (in Merton’s 
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terminology) against changes in one of the state variables. When an 
unconstrained Pareto-optimal allocation is not possible, one assumption of 
Theorem 2 is violated and changes in individuals’ optimal consumption rates 
are not necessarily perfectly correlated with each other or with changes in 
the aggregate consumption rate. In a general capital market, the following 
theorem holds : 

Theorem 3. Consumption Allocutions in General Capital Markets. Given a 
continuous-time economic model with general capital markets, at every instant 

m time, the optimal portfolio for each individual results in changes in the 
mdividual’s optimal consumption rate that hare the muximum possible cor- 

relation with changes in the aggregate consumption rate. 

Proof. Individual k’s optimal portfolio given in (12) maximizes the co- 
variance of k’s changes in consumption with changes in aggregate con- 
sumption for a given variance of k’s changes in consumption. That is: wkWk 

solves 

max CL w’ V,, + c; V,, w 

By maximizing k’s covariance of consumption changes with changes in 
aggregate consumption, for given variances of k’s consumption changes and 
aggregate consumption changes, the correlation coefficient between the 
individual’s consumption and aggregate consumption is 
maximized. Q.E.D. 

This result provides an explanation for the fact that the derivation of the 
mtertemporal CAPM does not require Pareto-optimal capital markets, i.e., 
the fact that perfect hedges against changes in all of the state variables are 
not necessary for the derivation. Since each individual’s optimal portfolio 
maximizes the correlation of his consumption with aggregate consumption, 
fluctuations in each individual’s consumption and marginal utility that are 
uncorrelated with aggregate consumption are also uncorrelated with the 
returns on all assets. Thus, an asset’s risk premium, which is deter- 
mined by the covariance of its return with individuals’ marginal utilities 
of consumption, is unaffected by the fluctuations in individuals’ consumption 
rates that are unrelated to aggregate consumption, because those fluctuations 
are also unrelated to all asset returns. The reason that asset betas with 
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respect to only aggregate consumption are in the intertemporal CAPM is 
that the assets available have betas equal to zero when measured relative to 
the components of individuals’ consumption risks that are uncorrelated with 
aggregate consumption. 

6. Asset pricing with no riskless asset 

This section derives for an economy with no riskless asset a ‘zero-beta’ 
intertemporal CAPM that corresponds to the zero-beta CAPM derived by 
Lintner (1969), Black (1972) and Vasicek (1971) in a single-period model. 
The differences between the models are: (1) an asset’s beta is measured 
relative to aggregate consumption, rather than relative to aggregate wealth, 
and (2) the zero-beta portfolio, whose expected return replaces that of the 
riskless return in (19), is a portfolio with returns uncorrelated with 
aggregate consumption, rather than a portfolio with returns uncorrelated 
with the market portfolio’s return. 

The only formal modification to the individual’s optimization problem 
[eqs. (6t(8), section 21 is that the expected rate of return on invested wealth, 
which was w’all + (1 - l’w)r, is now simply a weighted average of risky asset 
returns, w’p,. The wealth constraint is now that the risky asset portfolio 
weights sum to unity, which may be enforced by the use of a Lagrange 
multiplier in (8). The first-order condition that the marginal utility of 
consumption equals the marginal utility of wealth is unchanged; however, 
the optimal risky asset portfolio of (10) now becomes 

wk Wk = ( - J”,/J”,,) V,' cc, 

+(~k/WkJ;,X;ll -V,‘V,,(J,k,/Jk,,), (10’) 

where ik is individual k’s Lagrange multiplier for his budget constraint. 
By an extension of the proof in appendix 1 for the (S+2)-fund theorem of 

section 2, it is seen that an (S+2)-fund theorem holds in this economy with 
no riskless asset. The funds may be chosen to be (1) the S portfolios having 
the highest correlations, respectively, with the S state variables summarizing 
investment opportunities, (2) the market portfolio, and (3) the zero 
consumption-beta portfolio of the risky assets that has minimum variance. 

Substituting partial derivatives of individual k’s direct utility function for 
consumption and k’s optimal consumption function for the partials of the 
indirect utility function in (lo’), and proceeding as in eqs. (12H16) in section 
3, gives 

v,,,= Tkp, + (Ikl/WkU;c). 
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Aggregating (16’) over all individuals gives 

where 

V,,=T”p,+vl, 

v =c Lk/WkU&. 

(17”) 

For any portfolio z with returns that are uncorrelated with aggregate 

consumption, from (17”) above, 

v= - T”,u,. 

Substituting this into (17”) gives 

h - Pz)b Mc=(T”)-‘, 
and 

(17”‘) 

(19’) 

Thus, if there is no riskless asset in the single-good continuous-time model, 
then the equilibrium expected return on an asset is equal to the expected 
return on a portfolio with returns uncorrelated with aggregate consumption 
plus a risk premium proportional to the asset’s consumption-beta. Both the 
mutual fund theorem of section 2 and the intertemporal CAPM of section 3 
hold with no riskless asset when ‘the riskless asset’ in those results is replaced 
by ‘the zero consumption-beta portfolio that has minimum variance’.14 

The next section examines asset pricing in the multi-good continuous-time 
model, when a nominally riskless asset is assumed to exist. 

7. Asset pricing with many consumption-goods 

The derivations of the consumption, portfolio and pricing results thus far 
have been in the context of a rather general single-good economy. This 
section discusses some modifications of the results that would occur in a 
multi-good economy. The major focus will be on conditions that permit the 
derivation of a ‘single-beta’ intertemporal capital asset pricing model with 
stochastic investment und consumption opportunities (similar to that of 
section 3, which had only stochastic investment opportunilic\). 

14The choice of a zero-beta, minimum-variance portfolio is intuitive, but not unique. For 
example, in the mutual fund theorem of section 2, the unconstramed minimum variance 
portfolio can also replace the riskless asset under the assumptions of this section. Also, the zero- 
beta mtertemporal CAPM can be written m terms of the expected return on any zero 
consumption-beta portfolIo 
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Let there be Q goods m the economy and let qk(t) be individual k’s Q x 1 
vector of the rates at which quantities are consumed of the various goods at 
time r. Each individual is assumed to maximize the expected utility of a time- 
additive utility function as in (6), but with Uk(ck, t) being replaced by uk(qk, t). 
The vector of consumption-goods prices is P,, and individual k’s rate of 
nominal expenditures is ck=P:qk. Individual k’s indirect utility function for 
consumption expenditures is now defined as 

Uk(ck,P;,t)= max ukfqk,t). 

(P:q'=c*) 
(26) 

The analysis of section 2 1s virtually unchanged in the multi-good model; 
first-order conditions (9) and (10) still hold when the state vector s is 
assumed to include as a subset P, and its probability distribution. The (S 
+2)-fund theorem obtains with instantaneous-maturity commodity futures 
contracts being perfect hedges for changes in consumption-goods prices. 
Similarly, the multi-beta asset-pricing model given by (11) holds in this 
model, with expected excess returns on those futures contracts (if they exist) 
being a subset of (cc: - r).’ 5 

Although, in the multi-good case, the form of the demand equations for 
assets is unchanged from section 2’s eq. (lo), section 3’s translation of those 
demands in terms of the individual’s optimal consumption function is 
somewhat different in the multi-good case. The difference arises from the fact 

that the utility of a given level of consumption expenditure now depends 

upon relative prices, P,. Mathematically, in section 2, Ut(c’, t) =Jk,(Wk, s, t) 
implied that UyCc: = J”,,, but in the multi-good case we have: U,k(ck,Pc(s), t) 
=.lk,(Wk,s,t) implies that U:(c”,+ U~p=,l~p by the implicit function theorem. 

Thus, individual k’s asset demand functions, written in terms of his optimal 
consumption function, are [from (10) and above, assuming the first Q state 
variables are the logarithms of consumption-goods prices] 

(27) 

The last term in (27) represents long or short components of asset demands 
for the portfolios that are most highly correlated with the prices of 
consumption-goods; this term arises from the dependence of the individual’s 

15Since futures contracts reqmre no Investment and, therefore, rates of return are undelined, 
the expected excess return on a contract m this context should be vlewed as the expected rate of 
return to a portfoho of the futures contract and an mstantaneously riskless bond that has face 
value equal to the price of the futures contract. 
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indirect marginal utility for nominal expenditure on consumption-goods 
prices. 

Let al’ be the Q x 1 vector of individual k’s budget shares, i.e., aj”=Pjq:/ck, 
and let mk be individual k’s vector of incremental (‘marginal’) budget shares, 
i.e., rn: =Pj(dq:/dck). The vector mk is the set of fractions of an additional 
dollar of total expenditure that would be spent on the various consumption- 
goods. The new term in (27) due to the multi-good model may be expressed 
in terms of the average and marginal vectors of budget shares as shown in 
appendix 3, giving asset demands 

+ v, l v*, 
c”a”/c”, - (Tk/cL)mk 

0 )- (28) 

Multiplying (28) by (V,,ck,) and rearranging terms gives 

’ (29) 

where the second line recognizes that ck=ck(Wk, s, t) and Ito’s Lemma 
implies that V,,,c”, +V,,C~ = VW,. 

Aggregating the optimality condition in (29) for all individuals gives a 
similar relation in terms of aggregate consumption and aggregate vectors of 
average budget shares and marginal budget shares, 

where 

Ir,-r-v,, (;)=(T”/W1[ Vd’,,s(;)], 

C TM. 

(30) 

The calculation of the economy-wide vector of average budget shares, a, 
requires only data on the aggregate dollars spent on the various goods; no 
other preference information is required. These shares are the fractions of 
aggregate expenditure that are spent on the various consumption-goods. These 
budget shares are, in principal, the weights used in the computation of the 
price deflator for .consumption expenditures in the National Income and 
Product Accounts. l 6 

“See the Survey of Current Business of the U.S. Department of Commerce. 



288 D.T. Breeden, An intertemporal asset pricing model 

The vector of aggregate marginal budget shares, m, is the set of fractions 
of an additional dollar of aggregate expenditure (allocated optimally among 
individuals) that would be spent on the various consumption goods, holding 
prices constant. The reason that this statement can be made, without explicit 
reference to the risk tolerances of individuals, is that the optimal allocation 
among individuals of an individual dollar of aggregate nominal expenditure 
is according to individuals’ risk tolerances relative to aggregate risk toler- 
ance, (Tk/TM). Thus, the aggregate marginal budget shares for goods may be 
written as 

mj = 1 (dck/dC)Pj(aq~/ack) = pj(aqj/ac). 
k 

(31) 

Note that the aggregate marginal budget share for each good can be 
computed as the product of (1) the aggregate average budget share for the 
good and (2) the aggregate expenditure elasticity of demand for the good, 

(a ln 4,)/(a ln C). 
It is useful for the subsequent analysis to define the local percentage 

changes in two price indices - one based upon average budget shares for the 
economy and one based upon the marginal budget shares for the economy,” 

dI/l = C aj (dPJP,), dl JJr,,,_C mj(dPj/Pj). 
1 i 

(32) 

The two terms in eq. (30) that involve m and a can be rewritten in terms of 
these price indices, giving 

(33) 

where I$,, and V,, are the vectors of the covariances of asset returns with the 
local percentage changes in the price indices. 

Since it can be shown that a feasible (but not necessarily optimal) 
allocation exists such that everyone in the economy has a consumption 

“A globally valid price index that is invariant to the level of nominal expenditure exists for 
an individual if and only if his mdifference curves are ‘homothetic’. This implies unitary demand 
elasticities for all goods. When they are not unitary, the individual’s budget shares depend upon 
his level of nominal expenditure, making the weights in his price index vary with the level of 
expenditure. A survey of price index results is provided by Samuelson and Swamy (1974). 
Identical and homothetic consumption preferences for all individuals are typically assumed to 
Justify the use of aggregate budget shares to compute a price index for the economy. The price 
mdices used in this paper do not require that individuals be identical, nor that they have 
homothetic preferences. The continuity of the continuous-time framework and the weaker 
requirement that the price indices be locally (not globally) valid permits the greater generality of 
consumption preferences of this paper. For a paper that utilizes preference restrictions that give 
a globally vahd price index, see Grauer and Litmnberger (1979). 
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allocation that is preferable to his current allocation if and only if the 

percentage change in aggregate nominal expenditure exceeds the percentage 
change in the average budget share price index, I, aggregate real con- 
sumption is defined as C* = C/I.” Given this definition, note that the vector 
of covariances of real asset returns with aggregate real consumption is 

V o*c*- - c,,nc- v,,- Qc.1, (34) 

where V,, . is the covariance of the aggregate average-weighted price index 
with aggregate real consumption. Defining an asset’s ‘real consumption-beta’, 
ST, as the local covariance of its real return with percentage changes in 
aggregate real consumption, divided by the variance rate of changes in 
aggregate real consumption, then (33) can be re-written in terms of assets’ 
real consumption-betas, 

P.l -Y-V,, ,=(TM/Ca~*)-‘[B,*-B:1], (35) 

where p: is the real consumption-beta of the nominally riskless asset. 
The left-hand side of (35) can be interpreted as the differences of the 

expected real returns on assets from the expected real return on the 
nominally riskless asset, where these expected real returns are evaluated 
relative to the price index with aggregate marginal budget shares. To see this, 
first note that the instantaneous expected percentage rate of change of an 
asset’s real price, P,/Z, is given by Ito’s Lemma as the expected nominal 
return on the asset, minus the expected rate of inflation measured by the 
index, and minus the covariance of the asset’s nominal return with inflation. 
The covariance term is explained by the fact that an asset with high nominal 
payoffs when prices are low and low nominal payoffs when prices are high 
buys more real goods on average than an asset with positive covariance of 
its nominal returns with inflation, assuming that expected nominal payoffs 
are the same for both assets. Since the covariance of the nominal return on 
the nominally riskless asset with inflation is zero, the LHS of (35) is the 
difference between the expected real returns on assets, r.*, and the expected 
real return on the nominally riskless asset, p, . * It can be easily verified that 
for any three assets i, j and k, 

(~t-~~i*)/(~‘-~j*)=(cl:-~i*)/(8:-Bj*) for all i,j, k. (36) 

Letting z represent a portfolio with real returns that are uncorrelated with 

‘*For a proof of the result stated. see Breeden (1977. ch 3) 
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changes in aggregate real consumption, it is seen that a multi-good, zero-beta 
intertemporal CAPM obtains 

~Lt--~=(B:!P:)(C(:-k:). (37) 

The use of the price index based upon aggregate marginal shares for 
calculation of expected real returns, while using the price index with 
aggregate average shares as weights for calculation of real consumption- 
betas, requires some intuitive explanation. Before proceeding with an expla- 
nation, note that there is no difference between the indices if aggregate 
expenditure elasticities of demand for goods are all unity. This aggregate 
‘homothetic’ case involves strong preference assumptions and is not assumed 
to hold. As in the single-good economy, asset prices are determined from 
their payoffs and from individuals’ marginal utilities of a dollar of con- 
sumption expenditure in the various states of the world. The marginal utility 
of a dollar to an individual depends upon: (1) the quantities of goods 
consumed, via diminishing marginal utilities for the consumption of goods, 
and (2) the quantities of goods that a dollar can buy. By the definition of the 
marginal budget share vector, an additional dollar is spent on goods in the 
proportions given by the marginal vector; thus, the price index with marginal 
weights evaluates the quantities of goods that another dollar purchases. As 
Samuelson and Swamy (1974) observed, real consumption is a quantity 
index. As a quantity index, the larger real consumption is, the smaller the 
marginal utility of goods consumed is. The role of the price index with 
average budget shares as weights in risk measurement arises from its use in 
the computation of aggregate real consumption, which is inversely related to 
the marginal utilities of consumption-goods. 

To this point, a real riskless asset is not assumed to exist, nor are futures 
contracts that can create a real riskless return assumed to exist. If a real 
riskless asset or portfolio is assumed to exist and have a real return of r*, 
then the expected return on a zero real consumption-beta portfolio in the 
pricing eq. (37) can be replaced by r*, 

p:-r*=(/y/j3:)(p:-r*). (38) 

Tnis is an intertemporal asset pricing model developed in a multi-good world 
with stochastic consumption and investment opportunities. 

The results obtained here may be compared to those obtained in the 
explicitly multi-commodity economies of Long (1974) and Grauer and 
Litzenberger (1979). Long makes no restrictions on preferences for goods, 
but assumes joint normality of consumption-goods prices. The effect of many 
goods in his model is to extend the number of betas that must be calculated 
to find the expected excess return on any asset from the expected excess 
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returns on futures contracts and on portfolios that hedge against investment 
opportunity set changes. The derivation in this paper of instantaneous ex- 

pected excess returns in terms of a single beta for each asset is a contributron 
to the literature. 

Grauer and f-itzenberger work with a multi-commodity, two-pertod state 
preference model and derive asset prices with particular attention to the 
prices of commodity futures contracts. They make no assumptions about the 
probability distribution of states of the world, but they assume that the 
capital markets are Pareto-optimal and that each individual has ‘homothetrc’ 
preferences for consumption-goods, i.e., that all Income elasticities of demand 
are unity for all goods, for each mdividual. They derive an asset’s risk 

premium from its return covariance with a single variable, the social 
marginal utility of wealth. This variable is a function of aggregate wealth 
deflated by a price index that is assumed to be the same for all individuals. 
The derivation in thus paper of a single-beta measure of risk in a multi- 
commodity world is similar to theirs, but knowledge of the social marginal 
utility function is not needed for the beta computatron of this paper. The 
difference between their focus upon wealth and the present focus on 
consumption is a product of their two-period world, which does not require 
an analysis of changing investment opportunities. Finally, the preference 
assumptions needed for the existence of a price index in a discrete-time 
model are not needed for the local statements of the continuous-trme model. 

8. Conclusion 

An intertemporal capital asset pricing model has been derived rn an 
economic environment permitting both stochastic consumption-goods prrces 
and stochastic portfolio opportunities. The paper is an extension and 
generalization of Merton’s (1973) continuous-time model, derivmg equivalent 
pricing equations that are simpler in form and are potentially emprrrcally 
testable. 

The use of aggregate consumption in empirical tests, rather than the 
market portfolio that has been used, has both vntues and difficulties. 
Difficultres with consumption numbers that are available include: (1) in- 

stantaneous consumption rates are not measured; rather, weekly, monthly, 
quarterly, or annual integrals of these rates are measured,” (2) only the part 
of the measured consumption of goods that gives current utility should be 
included, which excludes a large fraction of current purchases of durables, 
and (3) the actual data that are available contain consrderable measurement 
error, whereas the prices and numbers of shares used in the market portfolio 

“With power utlhty functions and lognormal consumption, this IS not a problem, smce the 
prung model holds wth betas and returns measured over any Interval See Breeden and 
Litzenberger (1978) for a proof of this result 
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computations are measured with very little error. The principal virtue of 
aggregate consumption measures, in comparison with the market proxies 
used, is that the consumption measures available cover a greater fraction of 
the true consumption variable than the fraction that the market portfolio 
measures cover of the true market portfolio (mainly because of the lack of 
coverage of human capital, real estate, and consumer durables in market 
measures). Note also that proposed capital expenditure projects typically 
have cash flows that are more significantly related to aggregate consumption, 
than to the market portfolio. This may make the distinction of projects with 
different risk levels more precise and more intuitive, thereby facilitating the 

use of asset pricing theory in capital budgeting. 
In the continuous-time model, areas that need additional theoretrcal 

development include the role of firms and their optimal investment and 
capital structure decisions, and the impact of transaction costs, mformation 
costs, and diverse beliefs upon optimal consumption-investment decisions 
and upon the structure of asset returns. 

Appendix 1: Proof of Theorem 1 

By aggregating the optimal portfolio demands of all individuals given by 
(10) the market portfolio must be 

w”M=~wkWk=T;V,‘(~,-r)+V,‘V,,H,M, (A.l) 
k 

where 

T”w = - J”,/J”,, and Ht = -J&,/J”,,, 

and where 

Tg=x Tf,, and Hy=C Hi. 
k k 

Substituting (A.l) into (10) allows the individual’s portfolio demands to be 
written as 

This proves that all individuals may obtain their optimal portfolio positions 
by trading in (S+ 2) ‘mutual funds’, with one of them being the market 
portfolio, one being the riskless asset, and S of them being given by VO;‘V,,. 

Next, note that column j of Va;‘V,,, i.e., Vai’V,,,, is the solution to the 

following problem (up to a factor of proportionality): 

&iI% solves , max {WI I&,+ A(0’ - w; V,, w,)} (A.3) 
w, 
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In (A.3), by maximizing covariance of the portfolio with s, for a given level 
of variance, we effectively find the portfolio of assets that maximizes the 
correlation coefficient of its returns with changes in state variable j. Given 
this, the theorem is proven from (A.2) and the fact that wealth not in risky 
assets is placed in the nominally riskless asset. Q.E.D. 

Appendix 2 

Since ck =ck( W’,s, t) and cj=cj(Wj,s, t), Ito’s Lemma implies that the 
covariance of ck and cj is 

V WkWk V W!Y, 

cov kk, c’)= (ck,Oc,k’) I/W,& vw,w, (A.4) 

V SWk V SW, 

=c,k’vsw,cJw+c,k’v,,cj+ck,vw~;Ic:+c~vw,w,cJw, 

where subscripted V’s represent covariance matrices with appropriate dimen- 
sions and subscripted c’s represent partial derivatives or gradients of those 
consumption functions. 

First, the assumption is that 

and 

pa-r= 

(A.51 

(A.61 

Define an S x (S + 1) matrix L to be 

L=(O I), (A.7) 

where 0 is an S x 1 vector of zeros and I is an S x S identity matrix. Note 
that 

and 

L(p-u)=ps*-r, 

LV=V,,,,-(v,, V,,). 

(A.8) 

64.9) 
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From individuals’ optimal asset demands, (12), rt is seen that 

which implies that 

c”w ~sw,=LV[C~WkWk] 

= TkL(p - r) - LVL’ci. 

(A.lO) 

(A.ll) 

Next, evaluate the last term of (A.4), 

c~Vwkw,cJw = c”w Wkwk’ vdWjcJw 

=[Tk(p-r)‘-ct’LV]V1[TJ(p-r)-VL’<] 

=TkTj(p-r)‘V-‘(p-r)-Tk(p-r)‘L’< 

- T’c,k’L(p - r) + ct’LVL’<. (A.12) 

Substituting the results of (A.ll) and (A.12) into (A.4) gives the covariance of 
changes in individual k’s optimal consumption rate with changes in j’s 
optimal consumption rate, 

cov (ck, cJ) = c,“‘[ TjL(p - r) - LVL’c-j] + c,k’LVL’& 

+ [ Tk (p - r)‘L’ - ct’LVL’]< 

+ TkTjy-- Tk(p-r)‘L’d 

- TJcf’L(p - r) + cS’LVL’< 

= TkTJy, (A.13) 

where y=(p-r)‘V-’ (p- r). Eq. (A.13) is eq. (24) of the text, as was to be 
shown. 

Appendix 3 

The definition of the consumer’s indirect utility function is 

U(c,f,P,)=~~~U(q,t)=maxju(q,t)+l(c-P,q)) 
‘I 

(A.14) 

and the first order conditions for a maximum imply that 

u,=M C) up= -Aq, (A.15) 
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and the shadow price ,I = U,. 

By differentiating the optimality conditions in (A.15), 

- Uln~,,c/U~~= (u,/U,,)Pj(aqj/dc) + P,qj= - Tn?j + CCL~. (A.16) 

Substitute (A.16) into (21), and (22) is obtained. 
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